Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
1.
J Psychopharmacol ; : 2698811241239206, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38605658

RESUMO

BACKGROUND: Reference to an intrinsic healing mechanism or an 'inner healer' is commonplace amongst psychedelic drug-using cultures. The 'inner healer' refers to the belief that psychedelic compounds, plants or concoctions have an intrinsically regenerative action on the mind and brain, analogous to intrinsic healing mechanisms within the physical body, for example, after sickness or injury. AIMS: Here, we sought to test and critique this idea by devising a single subjective rating item pertaining to perceived 'inner healing' effects. METHODS: The item was issued to 59 patients after a single high (25 mg, n = 30) or 'placebo' (1 mg, n = 29) dose of psilocybin in a double-blind randomised controlled trial of psilocybin for depression. RESULTS: Inner healer scores were higher after the high versus placebo dose of psilocybin (t = 3.88, p < 0.001). Within the high-dose sub-sample only, inner healer scores predicted improved depressive symptomatology at 2 weeks post-dosing. CONCLUSIONS: The principle of activating inner healing mechanisms via psychedelics is scientifically nascent; however, this study takes a positivist and pragmatic step forward, asking whether it warrants further examination.

2.
J Psychopharmacol ; : 2698811241237870, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38520045

RESUMO

BACKGROUND: There is growing evidence for the therapeutic effects of the psychedelic drug psilocybin for major depression. However, due to the lack of safety data on combining psilocybin with selective serotonin reuptake inhibitors (SSRIs) and serotonin-norepinephrine reuptake inhibitors (SNRIs) and concerns that there may be a negative interaction on efficacy, participants enrolling in psychedelic trials are usually required to discontinue SNRI/SNRIs prior to enrolling. AIMS: Using data from a recent clinical trial examining the comparative efficacy the psychedelic drug psilocybin (P) combined with approximately 20 h of psychological support to a 6-week (daily) course of the SSRI escitalopram plus matched psychological support for major depressive disorder, we explored the effects of discontinuing SSRI/SNRIs prior to study enrolment on study outcomes. METHODS: Exploratory post hoc analyses using linear mixed effects model were performed to investigate the discontinuation effect on various validated depression symptom severity scales and well-being. The impact of SSRI/SNRIs discontinuation on the acute psychedelic experience was also explored. RESULTS/OUTCOMES: In the psilocybin group, there was a reduced treatment effect on all outcome measures for SSRI/SNRIs discontinuers compared with unmedicated patients at trial entry. However, no effects of discontinuation on measures of the acute psychedelic experience were found. CONCLUSION: Discontinuation of SSRI/SNRIs before psilocybin might diminish response to treatment; however, as we did not test SSRI/SNRI continuation in our trial, we cannot infer such causation. Moreover, the exploratory nature of the analyses makes them hypothesis generating, and not confirmatory. A controlled trial of SSRI/SNRI discontinuation versus continuation prior to psilocybin is urgently required.

3.
Comput Biol Med ; 170: 107857, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38244468

RESUMO

Recent research is revealing how cognitive processes are supported by a complex interplay between the brain and the rest of the body, which can be investigated by the analysis of physiological features such as breathing rhythms, heart rate, and skin conductance. Heart rate dynamics are of particular interest as they provide a way to track the sympathetic and parasympathetic outflow from the autonomic nervous system, which is known to play a key role in modulating attention, memory, decision-making, and emotional processing. However, extracting useful information from heartbeats about the autonomic outflow is still challenging due to the noisy estimates that result from standard signal-processing methods. To advance this state of affairs, we propose a novel approach in how to conceptualise and model heart rate: instead of being a mere summary of the observed inter-beat intervals, we introduce a modelling framework that views heart rate as a hidden stochastic process that drives the observed heartbeats. Moreover, by leveraging the rich literature of state-space modelling and Bayesian inference, our proposed framework delivers a description of heart rate dynamics that is not a point estimate but a posterior distribution of a generative model. We illustrate the capabilities of our method by showing that it recapitulates linear properties of conventional heart rate estimators, while exhibiting a better discriminative power for metrics of dynamical complexity compared across different physiological states.


Assuntos
Sistema Nervoso Autônomo , Coração , Frequência Cardíaca/fisiologia , Teorema de Bayes , Sistema Nervoso Autônomo/fisiologia , Encéfalo/fisiologia
4.
ACS Chem Neurosci ; 15(3): 462-471, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38214686

RESUMO

Recent findings have shown that psychedelics reliably enhance brain entropy (understood as neural signal diversity), and this effect has been associated with both acute and long-term psychological outcomes, such as personality changes. These findings are particularly intriguing, given that a decrease of brain entropy is a robust indicator of loss of consciousness (e.g., from wakefulness to sleep). However, little is known about how context impacts the entropy-enhancing effect of psychedelics, which carries important implications for how it can be exploited in, for example, psychedelic psychotherapy. This article investigates how brain entropy is modulated by stimulus manipulation during a psychedelic experience by studying participants under the effects of lysergic acid diethylamide (LSD) or placebo, either with gross state changes (eyes closed vs open) or different stimuli (no stimulus vs music vs video). Results show that while brain entropy increases with LSD under all of the experimental conditions, it exhibits the largest changes when subjects have their eyes closed. Furthermore, brain entropy changes are consistently associated with subjective ratings of the psychedelic experience, but this relationship is disrupted when participants are viewing a video─potentially due to a "competition" between external stimuli and endogenous LSD-induced imagery. Taken together, our findings provide strong quantitative evidence of the role of context in modulating neural dynamics during a psychedelic experience, underlining the importance of performing psychedelic psychotherapy in a suitable environment.


Assuntos
Alucinógenos , Humanos , Alucinógenos/farmacologia , Dietilamida do Ácido Lisérgico , Encéfalo , Mapeamento Encefálico , Psicoterapia
5.
Trends Cogn Sci ; 28(4): 352-368, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38199949

RESUMO

To explain how the brain orchestrates information-processing for cognition, we must understand information itself. Importantly, information is not a monolithic entity. Information decomposition techniques provide a way to split information into its constituent elements: unique, redundant, and synergistic information. We review how disentangling synergistic and redundant interactions is redefining our understanding of integrative brain function and its neural organisation. To explain how the brain navigates the trade-offs between redundancy and synergy, we review converging evidence integrating the structural, molecular, and functional underpinnings of synergy and redundancy; their roles in cognition and computation; and how they might arise over evolution and development. Overall, disentangling synergistic and redundant information provides a guiding principle for understanding the informational architecture of the brain and cognition.


Assuntos
Encéfalo , Cognição , Humanos
6.
Psychol Med ; : 1-8, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38247730

RESUMO

BACKGROUND: To investigate the association between pre-trial expectancy, suggestibility, and response to treatment in a trial of escitalopram and investigational drug, COMP360, psilocybin, in the treatment of major depressive disorder (ClinicalTrials.gov registration: NCT03429075). METHODS: We used data (n = 55) from our recent double-blind, parallel-group, randomized head-to-head comparison trial of escitalopram and investigational drug, COMP360, psilocybin. Mixed linear models were used to investigate the association between pre-treatment efficacy-related expectations, as well as baseline trait suggestibility and absorption, and therapeutic response to both escitalopram and COMP360 psilocybin. RESULTS: Patients had significantly higher expectancy for psilocybin relative to escitalopram; however, expectancy for escitalopram was associated with improved therapeutic outcomes to escitalopram, expectancy for psilocybin was not predictive of response to psilocybin. Separately, we found that pre-treatment trait suggestibility was associated with therapeutic response in the psilocybin arm, but not in the escitalopram arm. CONCLUSIONS: Overall, our results suggest that psychedelic therapy may be less vulnerable to expectancy biases than previously suspected. The relationship between baseline trait suggestibility and response to psilocybin therapy implies that highly suggestible individuals may be primed for response to this treatment.

7.
J Psychopharmacol ; 38(1): 56-67, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37897244

RESUMO

N,N-Dimethyltryptamine (DMT) is a serotonergic psychedelic that induces a rapid and transient altered state of consciousness when inhaled or injected via bolus administration. Its marked and novel subjective effects make DMT a powerful tool for the neuroscientific study of consciousness and preliminary results show its potential role in treating mental health conditions. In a within-subjects, placebo-controlled study, we investigated a novel method of DMT administration involving a bolus injection paired with a constant-rate infusion, with the goal of extending the DMT experience. Pharmacokinetic parameters of DMT estimated from plasma data of a previous study of bolus intravenous DMT were used to derive dose regimens necessary to keep subjects in steady levels of immersion into the DMT experience over an extended period of 30 min, and four dose regimens consisting of a bolus loading dose and a slow-rate infusion were tested in eleven healthy volunteers (seven male, four female, mean age ± SD = 37.09 ± 8.93 years). The present method is effective for extending the DMT experience in a stable and tolerable fashion. While subjective effects were maintained over the period of active infusion, anxiety ratings remained low and heart rate habituated within 15 min, indicating psychological and physiological safety of extended DMT. Plasma DMT concentrations increased consistently starting 10 min into DMT administration, whereas psychological effects plateaued into the desired steady state, suggesting the development of acute psychological tolerance to DMT. Taken together, these findings demonstrate the safety and effectiveness of continuous IV DMT administration, laying the groundwork for the further development of this method of administration for basic and clinical research.


Assuntos
Alucinógenos , Transtornos Mentais , Feminino , Humanos , Masculino , Administração Intravenosa , Estado de Consciência , Alucinógenos/farmacologia , N,N-Dimetiltriptamina , Adulto , Pessoa de Meia-Idade
8.
Brain ; 147(1): 56-80, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-37703310

RESUMO

Integrating independent but converging lines of research on brain function and neurodevelopment across scales, this article proposes that serotonin 2A receptor (5-HT2AR) signalling is an evolutionary and developmental driver and potent modulator of the macroscale functional organization of the human cerebral cortex. A wealth of evidence indicates that the anatomical and functional organization of the cortex follows a unimodal-to-transmodal gradient. Situated at the apex of this processing hierarchy-where it plays a central role in the integrative processes underpinning complex, human-defining cognition-the transmodal cortex has disproportionately expanded across human development and evolution. Notably, the adult human transmodal cortex is especially rich in 5-HT2AR expression and recent evidence suggests that, during early brain development, 5-HT2AR signalling on neural progenitor cells stimulates their proliferation-a critical process for evolutionarily-relevant cortical expansion. Drawing on multimodal neuroimaging and cross-species investigations, we argue that, by contributing to the expansion of the human cortex and being prevalent at the apex of its hierarchy in the adult brain, 5-HT2AR signalling plays a major role in both human cortical expansion and functioning. Owing to its unique excitatory and downstream cellular effects, neuronal 5-HT2AR agonism promotes neuroplasticity, learning and cognitive and psychological flexibility in a context-(hyper)sensitive manner with therapeutic potential. Overall, we delineate a dual role of 5-HT2ARs in enabling both the expansion and modulation of the human transmodal cortex.


Assuntos
Córtex Cerebral , Receptor 5-HT2A de Serotonina , Adulto , Humanos , Encéfalo , Córtex Cerebral/fisiologia , Cognição/fisiologia , Neuroimagem
9.
Chaos ; 33(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38048252

RESUMO

Recent research has provided a wealth of evidence highlighting the pivotal role of high-order interdependencies in supporting the information-processing capabilities of distributed complex systems. These findings may suggest that high-order interdependencies constitute a powerful resource that is, however, challenging to harness and can be readily disrupted. In this paper, we contest this perspective by demonstrating that high-order interdependencies can not only exhibit robustness to stochastic perturbations, but can in fact be enhanced by them. Using elementary cellular automata as a general testbed, our results unveil the capacity of dynamical noise to enhance the statistical regularities between agents and, intriguingly, even alter the prevailing character of their interdependencies. Furthermore, our results show that these effects are related to the high-order structure of the local rules, which affect the system's susceptibility to noise and characteristic time scales. These results deepen our understanding of how high-order interdependencies may spontaneously emerge within distributed systems interacting with stochastic environments, thus providing an initial step toward elucidating their origin and function in complex systems like the human brain.

10.
Top Cogn Sci ; 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38158882

RESUMO

The immune system is a central component of organismic function in humans. This paper addresses self-organization of biological systems in relation to-and nested within-other biological systems in pregnancy. Pregnancy constitutes a fundamental state for human embodiment and a key step in the evolution and conservation of our species. While not all humans can be pregnant, our initial state of emerging and growing within another person's body is universal. Hence, the pregnant state does not concern some individuals but all individuals. Indeed, the hierarchical relationship in pregnancy reflects an even earlier autopoietic process in the embryo by which the number of individuals in a single blastoderm is dynamically determined by cell- interactions. The relationship and the interactions between the two self-organizing systems during pregnancy may play a pivotal role in understanding the nature of biological self-organization per se in humans. Specifically, we consider the role of the immune system in biological self-organization in addition to neural/brain systems that furnish us with a sense of self. We examine the complex case of pregnancy, whereby two immune systems need to negotiate the exchange of resources and information in order to maintain viable self-regulation of nested systems. We conclude with a proposal for the mechanisms-that scaffold the complex relationship between two self-organising systems in pregnancy-through the lens of the Active Inference, with a focus on shared Markov blankets.

11.
Neurosci Conscious ; 2023(1): niad017, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37424966

RESUMO

Recent research has demonstrated the potential of psychedelic therapy for mental health care. However, the psychological experience underlying its therapeutic effects remains poorly understood. This paper proposes a framework that suggests psychedelics act as destabilizers, both psychologically and neurophysiologically. Drawing on the 'entropic brain' hypothesis and the 'RElaxed Beliefs Under pSychedelics' model, this paper focuses on the richness of psychological experience. Through a complex systems theory perspective, we suggest that psychedelics destabilize fixed points or attractors, breaking reinforced patterns of thinking and behaving. Our approach explains how psychedelic-induced increases in brain entropy destabilize neurophysiological set points and lead to new conceptualizations of psychedelic psychotherapy. These insights have important implications for risk mitigation and treatment optimization in psychedelic medicine, both during the peak psychedelic experience and during the subacute period of potential recovery.

12.
Psychedelic Med (New Rochelle) ; 1(1): 18-26, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37337526

RESUMO

Objectives: To perform a Bayesian reanalysis of a recent trial of psilocybin (COMP360) versus escitalopram for Major Depressive Disorder (MDD) in order to provide a more informative interpretation of the indeterminate outcome of a previous frequentist analysis. Design: Reanalysis of a two-arm double-blind placebo controlled trial. Participants: Fifty-nine patients with MDD. Interventions: Two doses of psilocybin 25mg and daily oral placebo versus daily escitalopram and 2 doses of psilocybin 1mg, with psychological support for both groups. Outcome measures: Quick Inventory of Depressive Symptomatology-Self-Report (QIDS SR-16), and three other depression scales as secondary outcomes: HAMD-17, MADRS, and BDI-1A. Results: Using Bayes factors and 'skeptical priors' which bias estimates towards zero, for the hypothesis that psilocybin is superior by any margin, we found indeterminate evidence for QIDS SR-16, strong evidence for BDI-1A and MADRS, and extremely strong evidence for HAMD-17. For the stronger hypothesis that psilocybin is superior by a 'clinically meaningful amount' (using literature defined values of the minimally clinically important difference), we found moderate evidence against it for QIDS SR-16, indeterminate evidence for BDI-1A and MADRS, and moderate evidence supporting it for HAMD-17. Furthermore, across the board we found extremely strong evidence for psilocybin's non-inferiority versus escitalopram. These findings were robust to prior sensitivity analysis. Conclusions: This Bayesian reanalysis supports the following inferences: 1) that psilocybin did indeed outperform escitalopram in this trial, but not to an extent that was clinically meaningful--and 2) that psilocybin is almost certainly non-inferior to escitalopram. The present results provide a more precise and nuanced interpretation to previously reported results from this trial, and support the need for further research into the relative efficacy of psilocybin therapy for depression with respect to current leading treatments. Trial registration number: NCT03429075.

13.
Neuroimage ; 275: 120162, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37196986

RESUMO

Disorders of consciousness are complex conditions characterised by persistent loss of responsiveness due to brain injury. They present diagnostic challenges and limited options for treatment, and highlight the urgent need for a more thorough understanding of how human consciousness arises from coordinated neural activity. The increasing availability of multimodal neuroimaging data has given rise to a wide range of clinically- and scientifically-motivated modelling efforts, seeking to improve data-driven stratification of patients, to identify causal mechanisms for patient pathophysiology and loss of consciousness more broadly, and to develop simulations as a means of testing in silico potential treatment avenues to restore consciousness. As a dedicated Working Group of clinicians and neuroscientists of the international Curing Coma Campaign, here we provide our framework and vision to understand the diverse statistical and generative computational modelling approaches that are being employed in this fast-growing field. We identify the gaps that exist between the current state-of-the-art in statistical and biophysical computational modelling in human neuroscience, and the aspirational goal of a mature field of modelling disorders of consciousness; which might drive improved treatments and outcomes in the clinic. Finally, we make several recommendations for how the field as a whole can work together to address these challenges.


Assuntos
Lesões Encefálicas , Estado de Consciência , Humanos , Estado de Consciência/fisiologia , Transtornos da Consciência/diagnóstico por imagem , Lesões Encefálicas/complicações , Neuroimagem , Simulação por Computador
14.
Entropy (Basel) ; 25(4)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37190466

RESUMO

The recent link discovered between generalized Legendre transforms and non-dually flat statistical manifolds suggests a fundamental reason behind the ubiquity of Rényi's divergence and entropy in a wide range of physical phenomena. However, these early findings still provide little intuition on the nature of this relationship and its implications for physical systems. Here we shed new light on the Legendre transform by revealing the consequences of its deformation via symplectic geometry and complexification. These findings reveal a novel common framework that leads to a principled and unified understanding of physical systems that are not well-described by classic information-theoretic quantities.

15.
Sci Rep ; 13(1): 6244, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-37069186

RESUMO

Psychedelic drugs, including lysergic acid diethylamide (LSD) and other agonists of the serotonin 2A receptor (5HT2A-R), induce drastic changes in subjective experience, and provide a unique opportunity to study the neurobiological basis of consciousness. One of the most notable neurophysiological signatures of psychedelics, increased entropy in spontaneous neural activity, is thought to be of relevance to the psychedelic experience, mediating both acute alterations in consciousness and long-term effects. However, no clear mechanistic explanation for this entropy increase has been put forward so far. We sought to do this here by building upon a recent whole-brain model of serotonergic neuromodulation, to study the entropic effects of 5HT2A-R activation. Our results reproduce the overall entropy increase observed in previous experiments in vivo, providing the first model-based explanation for this phenomenon. We also found that entropy changes were not uniform across the brain: entropy increased in all regions, but the larger effect were localised in visuo-occipital regions. Interestingly, at the whole-brain level, this reconfiguration was not well explained by 5HT2A-R density, but related closely to the topological properties of the brain's anatomical connectivity. These results help us understand the mechanisms underlying the psychedelic state and, more generally, the pharmacological modulation of whole-brain activity.


Assuntos
Alucinógenos , Alucinógenos/farmacologia , Entropia , Encéfalo/fisiologia , Dietilamida do Ácido Lisérgico/farmacologia , Estado de Consciência
16.
Proc Natl Acad Sci U S A ; 120(13): e2218949120, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36940333

RESUMO

Psychedelics have attracted medical interest, but their effects on human brain function are incompletely understood. In a comprehensive, within-subjects, placebo-controlled design, we acquired multimodal neuroimaging [i.e., EEG-fMRI (electroencephalography-functional MRI)] data to assess the effects of intravenous (IV) N,N-Dimethyltryptamine (DMT) on brain function in 20 healthy volunteers. Simultaneous EEG-fMRI was acquired prior to, during, and after a bolus IV administration of 20 mg DMT, and, separately, placebo. At dosages consistent with the present study, DMT, a serotonin 2A receptor (5-HT2AR) agonist, induces a deeply immersive and radically altered state of consciousness. DMT is thus a useful research tool for probing the neural correlates of conscious experience. Here, fMRI results revealed robust increases in global functional connectivity (GFC), network disintegration and desegregation, and a compression of the principal cortical gradient under DMT. GFC × subjective intensity maps correlated with independent positron emission tomography (PET)-derived 5-HT2AR maps, and both overlapped with meta-analytical data implying human-specific psychological functions. Changes in major EEG-measured neurophysiological properties correlated with specific changes in various fMRI metrics, enriching our understanding of the neural basis of DMT's effects. The present findings advance on previous work by confirming a predominant action of DMT-and likely other 5-HT2AR agonist psychedelics-on the brain's transmodal association pole, i.e., the neurodevelopmentally and evolutionarily recent cortex that is associated with species-specific psychological advancements, and high expression of 5-HT2A receptors.


Assuntos
Alucinógenos , N,N-Dimetiltriptamina , Humanos , N,N-Dimetiltriptamina/farmacologia , Alucinógenos/farmacologia , Imageamento por Ressonância Magnética , Encéfalo , Eletroencefalografia
17.
PLoS One ; 18(3): e0282707, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36952467

RESUMO

The disconnection hypothesis of schizophrenia proposes that symptoms of the disorder arise as a result of aberrant functional integration between segregated areas of the brain. The concept of metastability characterizes the coexistence of competing tendencies for functional integration and functional segregation in the brain, and is therefore well suited for the study of schizophrenia. In this study, we investigate metastability as a candidate neuromechanistic biomarker of schizophrenia pathology, including a demonstration of reliability and face validity. Group-level discrimination, individual-level classification, pathophysiological relevance, and explanatory power were assessed using two independent case-control studies of schizophrenia, the Human Connectome Project Early Psychosis (HCPEP) study (controls n = 53, non-affective psychosis n = 82) and the Cobre study (controls n = 71, cases n = 59). In this work we extend Leading Eigenvector Dynamic Analysis (LEiDA) to capture specific features of dynamic functional connectivity and then implement a novel approach to estimate metastability. We used non-parametric testing to evaluate group-level differences and a naïve Bayes classifier to discriminate cases from controls. Our results show that our new approach is capable of discriminating cases from controls with elevated effect sizes relative to published literature, reflected in an up to 76% area under the curve (AUC) in out-of-sample classification analyses. Additionally, our new metric showed explanatory power of between 81-92% for measures of integration and segregation. Furthermore, our analyses demonstrated that patients with early psychosis exhibit intermittent disconnectivity of subcortical regions with frontal cortex and cerebellar regions, introducing new insights about the mechanistic bases of these conditions. Overall, these findings demonstrate reliability and face validity of metastability as a candidate neuromechanistic biomarker of schizophrenia pathology.


Assuntos
Conectoma , Esquizofrenia , Humanos , Reprodutibilidade dos Testes , Teorema de Bayes , Imageamento por Ressonância Magnética/métodos , Encéfalo/patologia , Conectoma/métodos , Biomarcadores
18.
PLoS Comput Biol ; 19(2): e1010811, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36735751

RESUMO

A topic of growing interest in computational neuroscience is the discovery of fundamental principles underlying global dynamics and the self-organization of the brain. In particular, the notion that the brain operates near criticality has gained considerable support, and recent work has shown that the dynamics of different brain states may be modeled by pairwise maximum entropy Ising models at various distances from a phase transition, i.e., from criticality. Here we aim to characterize two brain states (psychedelics-induced and placebo) as captured by functional magnetic resonance imaging (fMRI), with features derived from the Ising spin model formalism (system temperature, critical point, susceptibility) and from algorithmic complexity. We hypothesized, along the lines of the entropic brain hypothesis, that psychedelics drive brain dynamics into a more disordered state at a higher Ising temperature and increased complexity. We analyze resting state blood-oxygen-level-dependent (BOLD) fMRI data collected in an earlier study from fifteen subjects in a control condition (placebo) and during ingestion of lysergic acid diethylamide (LSD). Working with the automated anatomical labeling (AAL) brain parcellation, we first create "archetype" Ising models representative of the entire dataset (global) and of the data in each condition. Remarkably, we find that such archetypes exhibit a strong correlation with an average structural connectome template obtained from dMRI (r = 0.6). We compare the archetypes from the two conditions and find that the Ising connectivity in the LSD condition is lower than in the placebo one, especially in homotopic links (interhemispheric connectivity), reflecting a significant decrease of homotopic functional connectivity in the LSD condition. The global archetype is then personalized for each individual and condition by adjusting the system temperature. The resulting temperatures are all near but above the critical point of the model in the paramagnetic (disordered) phase. The individualized Ising temperatures are higher in the LSD condition than in the placebo condition (p = 9 × 10-5). Next, we estimate the Lempel-Ziv-Welch (LZW) complexity of the binarized BOLD data and the synthetic data generated with the individualized model using the Metropolis algorithm for each participant and condition. The LZW complexity computed from experimental data reveals a weak statistical relationship with condition (p = 0.04 one-tailed Wilcoxon test) and none with Ising temperature (r(13) = 0.13, p = 0.65), presumably because of the limited length of the BOLD time series. Similarly, we explore complexity using the block decomposition method (BDM), a more advanced method for estimating algorithmic complexity. The BDM complexity of the experimental data displays a significant correlation with Ising temperature (r(13) = 0.56, p = 0.03) and a weak but significant correlation with condition (p = 0.04, one-tailed Wilcoxon test). This study suggests that the effects of LSD increase the complexity of brain dynamics by loosening interhemispheric connectivity-especially homotopic links. In agreement with earlier work using the Ising formalism with BOLD data, we find the brain state in the placebo condition is already above the critical point, with LSD resulting in a shift further away from criticality into a more disordered state.


Assuntos
Alucinógenos , Humanos , Alucinógenos/farmacologia , Dietilamida do Ácido Lisérgico/farmacologia , Temperatura , Encéfalo , Imageamento por Ressonância Magnética/métodos
19.
Neuroimage ; 269: 119926, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36740030

RESUMO

High-level brain functions are widely believed to emerge from the orchestrated activity of multiple neural systems. However, lacking a formal definition and practical quantification of emergence for experimental data, neuroscientists have been unable to empirically test this long-standing conjecture. Here we investigate this fundamental question by leveraging a recently proposed framework known as "Integrated Information Decomposition," which establishes a principled information-theoretic approach to operationalise and quantify emergence in dynamical systems - including the human brain. By analysing functional MRI data, our results show that the emergent and hierarchical character of neural dynamics is significantly diminished in chronically unresponsive patients suffering from severe brain injury. At a functional level, we demonstrate that emergence capacity is positively correlated with the extent of hierarchical organisation in brain activity. Furthermore, by combining computational approaches from network control theory and whole-brain biophysical modelling, we show that the reduced capacity for emergent and hierarchical dynamics in severely brain-injured patients can be mechanistically explained by disruptions in the patients' structural connectome. Overall, our results suggest that chronic unresponsiveness resulting from severe brain injury may be related to structural impairment of the fundamental neural infrastructures required for brain dynamics to support emergence.


Assuntos
Lesões Encefálicas , Conectoma , Fenômenos Fisiológicos do Sistema Nervoso , Humanos , Conectoma/métodos , Encéfalo , Imageamento por Ressonância Magnética/métodos
20.
Trends Cogn Sci ; 27(5): 433-445, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36740518

RESUMO

Recent findings suggesting the potential transdiagnostic efficacy of psychedelic-assisted therapy have fostered the need to deepen our understanding of psychedelic brain action. Functional neuroimaging investigations have found that psychedelics reduce the functional segregation of large-scale brain networks. However, beyond this general trend, findings have been largely inconsistent. We argue here that a perspective based on complexity science that foregrounds the distributed, interactional, and dynamic nature of brain function may render these inconsistencies intelligible. We propose that psychedelics induce a mode of brain function that is more dynamically flexible, diverse, integrated, and tuned for information sharing, consistent with greater criticality. This 'meta' perspective has the potential to unify past findings and guide intuitions toward compelling mechanistic models.


Assuntos
Alucinógenos , Humanos , Alucinógenos/farmacologia , Encéfalo , Neuroimagem Funcional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...